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Abstract: The present investigation documents the fact that hydroxyl-directed hydrogenation of cyclic 
and acyclic olefinic alcohols with the cationic iridium catalyst, Ir(COD)py(PCy3)PFg, exhibits 
reaction diastereoselectivity which is dependent upon catalyst-substrate stoichiometry. 

Chemical reactions capable of being “directed” by resident substrate functionality have proven to 

be exceedingly valuable in stereoselective synthesis. The development of hydroxyl-directed hydrogenation 

catalysts has provided an important addition to this small but important class of reactions.l,2 Recently, 

we disclosed our results of a comparative study between cationic rhodium and iridium catalysts in the 

diastereoselective hydrogenation of both cyclic and acyclic hydroxy olefins (c.f. Scheme).2 - 
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In conjunction with this study we found that while both (Rh(NBD)DIPHOS-4)BF4 (1)3 and Ir(COD)py- 

(PCy3)PF6 (2)4 performed remarkably well in the stereocontrolled hydrogenation of cyclic olefinic 

alcohols, the cationic rhodium catalyst 1 proved to be clearly superior when acyclic allylic alcohols were 

examined. The purpose of this Letter is to disclose additional studies which were initiated to gain a 

deeper understanding of the origin of the differing stereoselectivities observed with these two catalysts. 

Further investigation of iridium catalyst 2 in the hydrogenation of allylic alcohols 3 and 4 (Scheme) led to 

the unanticipated discovery that a decrease in the catalyst : substrate ratio resulted in an increase in 

reaction diastereoselection! This trend is quite evident in the hydrogenation of 3 (R = Me) with catalyst 2. 

At 20 mol % of iridium catalyst 2 the reduction of 3 (R = Me) afforded a ratio of 5~6 of 57:43 while at 2.5 

mol % of catalyst the reaction diastereoselection improved to 85:15 (Table 1). 

Table 1. Stereoselective Hydrogenation of Allylic Alcohols 3 and 4 Catalyzed by Iridium Complexes 2 and 
7 and Rhodium Complex 1 (Scheme). 

Ratio, 5 : 6 Gp b Ratio, 5 : 6 C Ratio, 5 : 6 d 

Substrate Ir(COD)py(PCyj)PFg (Ir(COD)DIPHOS-4)BF4 (Rh(NBD)DIPHOS_4)BF4 

(2) ( 7) ( 1) 

20 mal% 2.5 mal% e 17.5 mal% 17.5 mal% 

3, R = Me 57:43 85:15 85:15 93:7 

3, R = Ph 56:44 79:21 X4:16 93:7 

3, R =-Pr 46:54 52:48 84:16 94:6 

4, R = Me 57:43 27~73 27~73 9:91 

4, R = Ph 58:42 52:48 f 16:84 6:94 

4, R =-Pr 55:45 50:50 26~74 8~92 

2 All product ratios determined by gas chromatography. b Carried out in anhydrous CH2CI2 at 15 psi 
H2 according to the general procedure described in Ref. lb. C Carried out in anhydrous CH2C12 at 
640 psi H2 according to the general procedure described in Ref. 2. d Ref. 2 (640 psi H2). 2 See 
Footnote 5. LLess than 10% conversion after 10 h at 15 psi hydrogen pressure. 

Inspection of the data on the stereoselective reductions of all six allylic alcohols 3 and 4 (R = Me, Ph, i- 

C3H7) reveals that this catalyst stoichiometry effect on reaction diastereoselection exhibits significant 

substrate dependence. In addition, in all but one case (4, R = Ph)5 the observed stereoselectivity was 

found to be independent of hydrogen pressure (15 - 1000 psi). Consequently, competing catalyst-promoted 

olefin isomerization (3 Z 4) which might conceal the intrinsic directivity from a given hydroxy olefin is 

not a major side reaction responsible for the low levels of asymmetric induction observed with the iridium 

catalyst 2. We suspect that the above observations which document the stoichiometry-dependent 

reduction diastereoselectivity with the Crabtree catalyst 2 may be relatively general. For example, the 

reductions of both 3-methyl-2-cyclohexen-l-01 and 4-methyl-3-cyclohexen-l-01 with 2 are significantly 

more diastereoselective at lower catalyst concentrations (Table II). 
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We therefore conclude that the excellent levels of chirality transfer observed by Stork and Kahne in the 

directed hydrogen of a range of cyclic hydroxy olefins with 20 mol % of the iridium catalyst 2 should 

constitute a minimum leve1 of asymmetric induction for those substrates examined.lb The nature of this 

inverse relationship between catalyst concentration and reaction diastereoselection is quite intriguing. 

Crabtree has noted that Ir(py)PCy3+ is deactivated via the formation of a trinuclear bridged hydride - 
which is inactive as a hydrogenation catalyst. 6 Based upon the above data we now entertain the 

possibility that more than one hydrogenation catalyst may be involved in reductions with 2 at high 

catalyst concentrations.7 For example, it is conceivable that a catalytically active polynuclear iridium 

species may be present which is not constrained to the same hydroxyl directivity effects as the 

mononuclear complex 2. 

Table II. Hydroxyl-Directed Olefin Hydrogenation of Cyclic Substrates with the Iridium Catalyst 

Ir(COD)py(PCyg)PFg ( 2 ). 

Substrate Productat !? Mo1%2 Ratio 

Ir(COD)py(PCyj)PPg Trans : Cis 

5O:l 

15O:l 

33:l c 

52:l 

2 Carried out in anhydrous CH2CI2 according to the general procedure provided in Ref. lb. b All product 
ratios determined by capillary gas chromatography. C Data obtained from Ref. lb. 

From data illustrated in Table 1 it is quite evident that the cationic rhodium catalyst 1 is 

significantly more stereoselective than the Crabtree iridium catalyst 2 in the hydrogenation of allylic 

alcohols 3 and 4. Due to the differing ligands on the rhodium and iridium catalysts 1 and 2, a direct 

comparison of the two metals is tenuous at best. Accordingly, the iridium complex, [Ir(COD)DIPHOS- 

4]BF4 (7) was preparedg and directly compared with the rhodium analog 1 in the hydrogenation of both 

acyclic and cyclic allylic alcohols. In the stereoselective reductions of allylic alcohols 3 and 4, 

Ir(DIPHOS-4)+ proved to be superior to the Crabtree catalyst Ir(py)PCy3+ but still less stereoselective 

than the rhodium analog Rh(DIPHOS-4)+ (Table 1). g On the other hand, the hydrogenation of 3-methyl-2- 

cyclohexen-l-01 to 3-methylcyclohexan-l-01 proved to be less selective with Ir(DIPHOS-4)+ (trans : cis = 

2O:l) than with Ir(py)PCy3+ (trans : cis = 50 - 15O:l). 
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This apparent dichotomy between the observed diastereoselection of iridium catalysts 2 and 7 with cyclic 

and acyclic allylic alcohols underscores the lack of current understanding of the intimate details of these 

reactions. The results presented herein clearly demonstrate that cationic iridium complexes 2 and 7, even 

under optima1 reaction conditions, fail to match the levels of asymmetric induction achieved by rhodium 

(1) catalyst 1 for acyclic allylic alcohols. Studies in these laboratories dealing with synthetic applications 

of this hydrogenation methodology are being explored at the present time and will be reported in due 

course. 
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NBD = norboradiene, DIPHOS-4 = 1,4-bis(diphenylphosphino)butane. NBD = norbornadiene, DIPHOS-4 

= 1,4-bis(diphenylphosphino)butane. The detailed procedure for the preparation of 2 is provided in the 

supplementary material of Ref. 2. The complex, (Rh(COD)DIPHOS-4)BF4, has also been reported: 
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COD = 1,5-cyclooctadiene, Cy = cyclohexyl, py = pyridine. 

Hydrogenation of 3 and 4 (R = Ph) were extremely slow at 15 psi hydrogen with 2.5 mol % 2. 

Increasing the hydrogen pressure (1000 psi) afforded similar results :3 (R = Ph), 5~6 = 75:25; 4 (R = 

Ph), 5:6 = 89:11. 

Chodosh, D. F.; Crabtree, R. H.; Felkin, H.; Morris, G. E. J. Organometal. Chem. 1978,161, C67. 

It should be noted that decreasing the concentration of 2 by solvent dilution had no effect on the 

reaction diastereoselection. Furthermore, decreasing the catalyst : substrate ratio below 2% had 

little additional effect on the reaction diastereoselection. For example, the hydrogenation of 3 (R = 

Me) with 1.3 mol % 2 afforded a ratio of 5~6 of 87:13. In addition, decreasing the catalyst : substrate 

ratio of rhodium catalyst 1 had little effect on the reaction diastereoselection. 

Prepared in direct analogy to the general procedure described in Ref. 2 for rhodium catalyst 1. 

Hydrogenation of 3 and 4 (R = Me) with 7 at 15 psi hydrogen was extremely slow and moderately 

selective :3 (R = Me), 5:6 = 61:39; 4 (R = Me), 5:6 = 35:63. However, isornerization was not a 

competing side reaction as in the case of Rh(I) analog 1. 
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